Inhibition of mammalian target of rapamycin complex 1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the sterol-regulatory element-binding protein 1/lipoprotein receptor-associated protein 1 signaling pathway

抑制脑微血管内皮中雷帕霉素复合物 1 的哺乳动物靶点可通过固醇调节元件结合蛋白 1/脂蛋白受体相关蛋白 1 信号通路改善糖尿病 Aβ 脑沉积和认知障碍

阅读:6
作者:Gege Jiang, Zhenzhen Long, Yaoling Wang, Yaofeng Wang, Ping Xue, Minfang Chen, Kang Yang, Wei Li

Aims

Mammalian target of rapamycin complex 1 (mTORC1) is highly activated in diabetes, and the decrease of low-density lipoprotein receptor-associated protein 1 (LRP1) in brain microvascular endothelial cells (BMECs) is a key factor leading to amyloid-β (Aβ) deposition in the brain and diabetic cognitive impairment, but the relationship between them is still unknown.

Conclusion

Inhibiting mTORC1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the SREBP1/LRP1 signaling pathway, suggesting that mTORC1 may be a potential target for the treatment of diabetic cognitive impairment.

Methods

In vitro, BMECs were cultured with high glucose, and the activation of mTORC1 and sterol-regulatory element-binding protein 1 (SREBP1) was observed. mTORC1 was inhibited by rapamycin and small interfering RNA (siRNA) in BMECs. Betulin and siRNA inhibited SREBP1, observed the mechanism of mTORC1-mediated effects on Aβ efflux in BMECs through LRP1 under high-glucose conditions. Constructed cerebrovascular endothelial cell-specific Raptor-knockout (Raptorfl/+ ) mice to investigate the role of mTORC1 in regulating LRP1-mediated Aβ efflux and diabetic cognitive impairment at the tissue level.

Results

mTORC1 activation was observed in HBMECs cultured in high glucose, and this change was confirmed in diabetic mice. Inhibiting mTORC1 corrected the reduction in Aβ efflux under high-glucose stimulation. In addition, high glucose activated the expression of SREBP1, and inhibiting of mTORC1 reduced the activation and expression of SREBP1. After inhibiting the activity of SREBP1, the presentation of LRP1 was improved, and the decrease of Aβ efflux mediated by high glucose was corrected. Raptorfl/+ diabetic mice had significantly inhibited activation of mTORC1 and SREBP1, increased LRP1 expression, increased Aβ efflux, and improved cognitive impairment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。