Microtubule destabilization caused by silicate via HDAC6 activation contributes to autophagic dysfunction in bone mesenchymal stem cells

硅酸盐通过 HDAC6 激活引起的微管不稳定导致骨髓间充质干细胞自噬功能障碍

阅读:5
作者:Zheng Li, Shuhao Liu, Tengfei Fu, Yi Peng, Jian Zhang

Background

Silicon-modified biomaterials have been extensively studied in bone tissue engineering. In recent years, the toxicity of silicon-doped biomaterials has gradually attracted attention but requires further elucidation. This study was designed to explore whether high-dose silicate can induce a cytotoxicity effect in bone mesenchymal stem cells (BMSCs) and the role of autophagy in its cytotoxicity and mechanism.

Conclusions

Microtubule destabilization caused by a high concentration of silicate via HDAC6 activation contributed to autophagic dysfunction in BMSCs, and inhibition of HDAC6 exerted a cytoprotection effect through restoration of the microtubule structure and autophagic flux.

Methods

Morphologic changes and cell viability of BMSCs were detected after different doses of silicate exposure. Autophagic proteins (LC3, p62), LC3 turnover assay, and RFP-GFP-LC3 assay were applied to detect the changes of autophagic flux following silicate treatment. Furthermore, to identify the potential mechanism of autophagic dysfunction, we tested the acetyl-α-tubulin protein level and histone deacetylase 6 (HDAC6) activity after high-dose silicate exposure as well as the changes in microtubule and autophagic activity after HDAC6 siRNA was applied.

Results

It was found that a high dose of silicate could induce a decrease in cell viability; LC3-II and p62 simultaneously increased after high-dose silicate exposure. A high concentration of silicate could induce autophagic dysfunction and cause autophagosomes to accumulate via microtubule destabilization. Results showed that acetyl-α-tubulin decreased significantly with high-dose silicate treatment, and inhibition of HDAC6 activity can restore microtubule structure and autophagic flux. Conclusions: Microtubule destabilization caused by a high concentration of silicate via HDAC6 activation contributed to autophagic dysfunction in BMSCs, and inhibition of HDAC6 exerted a cytoprotection effect through restoration of the microtubule structure and autophagic flux.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。