Towards Induction of Angiogenesis in Dental Pulp Stem Cells Using Chitosan-Based Hydrogels Releasing Basic Fibroblast Growth Factor

使用壳聚糖基水凝胶释放碱性成纤维细胞生长因子来诱导牙髓干细胞的血管生成

阅读:4
作者:Baharak Divband, Bahareh Pouya, Mehdi Hassanpour, Mahdieh Alipour, Roya Salehi, Reza Rahbarghazi, Sahriar Shahi, Zahra Aghazadeh, Marziyeh Aghazadeh

Conclusions

On a more general note, this study demonstrates that the bFGF-loaded PCL/CS scaffolds have the potential to promote angiogenesis of hDPSCs, which could provide vitality of dentin-pulp complex as the initial required factor for regenerative endodontic procedures.

Methods

Poly (ε-caprolactone) (PCL)/chitosan- (CS-) based highly porous scaffold (PCL/CS) was prepared and evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. The adhesion and survival potency of seeded cells were assessed by SEM and MTT assays, respectively. The amount of angiogenic markers was investigated in gene and protein levels by real-time PCR and western blotting assays, respectively.

Results

Based on our findings, the SEM and FTIR tests confirmed the appropriate structure of synthesized scaffolds. Besides, the adhesion and survival rate of cells and the levels of VEGFR-2, Tie2, and Angiopoietin-1 genes were increased significantly in the PCL/CS/bFGF group. Also, the western blotting results showed the upregulation of these markers at protein levels, which were considerably higher at the PCL/CS/bFGF group (P < 0.05). Conclusions: On a more general note, this study demonstrates that the bFGF-loaded PCL/CS scaffolds have the potential to promote angiogenesis of hDPSCs, which could provide vitality of dentin-pulp complex as the initial required factor for regenerative endodontic procedures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。