Phenotypic traits of mesenchymal stem cell sheets fabricated by temperature-responsive cell culture plate: structural characteristics of MSC sheets

温度响应型细胞培养板制备间充质干细胞片的表型特征:MSC片的结构特征

阅读:5
作者:Mitsuyoshi Nakao, Kyungsook Kim, Kenichi Nagase, David W Grainger, Hideko Kanazawa, Teruo Okano

Background

In most stem cell therapy strategies reported to date, stem cells are introduced to damaged tissue sites to repair and regenerate the original tissue structure and function. MSC therapeutic efficacies are inconsistent, largely attributed to transplanted MSC difficulties both in engrafting at tissue sites and in retaining their therapeutic functions from suspension formulations. MSC functional components, including cell adhesion and cell-cell junction proteins, and ECM that contribute to essential cellular therapeutic effects, are damaged or removed by proteolytic enzymes used in stem cell harvesting strategies from culture. To overcome these limitations,

Conclusion

Retention of cellular structures such as ECM, cell-cell junctions, and cell-ECM junctions is correlated with human umbilical cord mesenchymal stem cell (hUC-MSC) survival after detachment from cell culture surfaces. Retaining these proteins intact in MSC cultures using cell sheet technology is proposed to enhance stem cell survival and their function in stem cell-based therapy.

Results

This study verified cleaved cellular proteins (vinculin, fibronectin, laminin, integrin β-1, and connexin 43) and increased apoptotic cell death produced under standard trypsin harvesting treatment in a time-dependent manner. However, MSC sheets produced without trypsin using only temperature-controlled sheet harvest from culture plastic exhibited intact cellular structures. Also, MSCs harvested using enzymatic treatment (i.e., chemical disruption) showed higher pYAP expression compared to MSC sheets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。