A Novel Integrated Workflow for Isolation Solvent Selection Using Prediction and Modeling

利用预测和建模选择分离溶剂的新型集成工作流程

阅读:8
作者:Sara Ottoboni, Bruce Wareham, Antony Vassileiou, Murray Robertson, Cameron J Brown, Blair Johnston, Chris J Price

Abstract

A predictive tool was developed to aid process design and to rationally select optimal solvents for isolation of active pharmaceutical ingredients. The objective was to minimize the experimental work required to design a purification process by (i) starting from a rationally selected crystallization solvent based on maximizing yield and minimizing solvent consumption (with the constraint of maintaining a suspension density which allows crystal suspension); (ii) for the crystallization solvent identified from step 1, a list of potential isolation solvents (selected based on a series of constraints) is ranked, based on thermodynamic consideration of yield and predicted purity using a mass balance model; and (iii) the most promising of the predicted combinations is verified experimentally, and the process conditions are adjusted to maximize impurity removal and maximize yield, taking into account mass transport and kinetic considerations. Here, we present a solvent selection workflow based on logical solvent ranking supported by solubility predictions, coupled with digital tools to transfer material property information between operations to predict the optimal purification strategy. This approach addresses isolation, preserving the particle attributes generated during crystallization, taking account of the risks of product precipitation and particle dissolution during washing, and the selection of solvents, which are favorable for drying.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。