The retinal pigment epithelium utilizes fatty acids for ketogenesis

视网膜色素上皮利用脂肪酸进行生酮作用

阅读:8
作者:Jeffrey Adijanto, Jianhai Du, Cynthia Moffat, Erin L Seifert, James B Hurle, Nancy J Philp

Abstract

Every day, shortly after light onset, photoreceptor cells shed approximately a tenth of their outer segment. The adjacent retinal pigment epithelial (RPE) cells phagocytize and digest shed photoreceptor outer segment, which provides a rich source of fatty acids that could be utilized as an energy substrate. From a microarray analysis, we found that RPE cells express particularly high levels of the mitochondrial HMG-CoA synthase 2 (Hmgcs2) compared with all other tissues (except the liver and colon), leading to the hypothesis that RPE cells, like hepatocytes, can produce β-hydroxybutyrate (β-HB) from fatty acids. Using primary human fetal RPE (hfRPE) cells cultured on Transwell filters with separate apical and basal chambers, we demonstrate that hfRPE cells can metabolize palmitate, a saturated fatty acid that constitutes .15% of all lipids in the photoreceptor outer segment, to produce β-HB. Importantly, we found that hfRPE cells preferentially release β-HB into the apical chamber and that this process is mediated primarily by monocarboxylate transporter isoform 1 (MCT1). Using a GC-MS analysis of (13)C-labeled metabolites, we showed that retinal cells can take up and metabolize (13)C-labeled β-HB into various TCA cycle intermediates and amino acids. Collectively, our data support a novel mechanism of RPE-retina metabolic coupling in which RPE cells metabolize fatty acids to produce β-HB, which is transported to the retina for use as a metabolic substrate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。