Walnut-Derived Peptides Ameliorate Scopolamine-Induced Memory Impairments in a Mouse Model via Activation of Peroxisome Proliferator-Activated Receptor γ-Mediated Excitotoxicity

核桃衍生肽通过激活过氧化物酶体增殖激活受体 γ 介导的兴奋性毒性改善小鼠模型中东莨菪碱诱发的记忆障碍

阅读:5
作者:Yue Shen, Qiao Dang, Li Fang, Dan Wu, Yanru Li, Fanrui Zhao, Chunlei Liu, Weihong Min

Abstract

We investigated the protective effect of walnut peptides and YVPFPLP (YP-7) on scopolamine-induced memory impairment in mice and β-amyloid (Aβ)-induced excitotoxic injury in primary hippocampal neurons, respectively. Additionally, the protective mechanism of YP-7 on neuronal excitotoxicity was explored. Mouse behavioral and hippocampal slice morphology experiments indicate that YP-7 improves the learning and memory abilities of cognitively impaired mice and protects synaptic integrity. Immunofluorescence, western blotting, and electrophysiological experiments on primary hippocampal neurons indicate that YP-7 inhibits neuronal damage caused by excessive excitation of neurons induced by Aβ. HT-22 cell treatment with peroxisome proliferator-activated receptor γ (PPARγ) activators and inhibitors showed that YP-7 activates PPARγ expression and maintains normal neuronal function by forming stable complexes with PPARγ to inhibit the extracellular regulated protein kinase pathway. Therefore, YP-7 can ameliorate glutamate-induced excitotoxicity and maintain neuronal signaling. This provides a theoretical basis for active peptides to ameliorate excitotoxicity and the development of functional foods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。