Probenecid as a noninjurious positive inotrope in an ischemic heart disease murine model

丙磺舒作为缺血性心脏病小鼠模型中的无害正性肌力药物

阅读:7
作者:Sheryl E Koch, Michael Tranter, Nathan Robbins, Kristin Luther, Umesh Singh, Min Jiang, Xiaoping Ren, Trisha Tee, Leah Smith, Priyanka Varma, W Keith Jones, Jack Rubinstein

Abstract

The current therapeutic options for acute decompensated heart failure are limited to afterload reducers and positive inotropes. The latter increases myocardial contractility through changes in myocyte calcium (Ca²⁺) handling (mostly through stimulation of the β-adrenergic pathways [β-ADR]) and is associated with paradoxical effects of arrhythmias, cell death, and subsequently increased mortality. We have previously demonstrated that probenecid can increase cytosolic Ca²⁺ levels in the cardiomyocyte resulting in an improved inotropic response in vitro and in vivo without activating the β-ADR system. We hypothesize that, in contrast to other commonly used inotropes, probenecid functions through a system separate from that of β-ADR and hence will increase contractility and improve function without damaging the heart. Furthermore, our goal was to evaluate the effect of probenecid on cell death in vitro and its use in vivo as a positive inotrope in a mouse model of ischemic cardiomyopathy. Herein, we demonstrate that probenecid induced an influx of Ca²⁺ similar to isoproterenol, but does not induce cell death in vitro. Through a series of in vivo experiments we also demonstrate that probenecid can be used at various time points and with various methods of administration in vivo in mice with myocardial ischemia, resulting in improved contractility and no significant difference in infarct size. In conclusion, we provide novel data that probenecid, through its activity on cellular Ca²⁺ levels, induces an inotropic effect without causing or exacerbating injury. This discovery may be translatable if this mechanism is preserved in man.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。