PRKAA1 induces aberrant mitophagy in a PINK1/Parkin-dependent manner, contributing to fluoride-induced developmental neurotoxicity

PRKAA1 以 PINK1/Parkin 依赖的方式诱导异常线粒体自噬,导致氟化物诱导的发育神经毒性

阅读:6
作者:Yanling Tang, Jingjing Zhang, Zeyu Hu, Wanjing Xu, Panpan Xu, Yue Ma, Hengrui Xing, Qiang Niu

Abstract

Chronic fluoride exposure can cause developmental neurotoxicity, however the precise mechanisms remain unclear. To explore the mechanism of mitophagy in fluoride-induced developmental neurotoxicity, specifically focusing on PRKAA1 in regulating the PINK1/Parkin pathway, we established a Sprage Dawley rat model with continuous sodium fluoride (NaF) exposure and an NaF-treated SH-SY5Y cell model. We found that NaF exposure increased the levels of LC3-Ⅱ and p62, impaired autophagic degradation, and subsequently blocked autophagic flux. Additionally, NaF exposure increased the expression of PINK1, Parkin, TOMM-20, and Cyt C and cleaved PARP in vivo and in vitro, indicating NaF promotes mitophagy and neuronal apoptosis. Meanwhile, phosphoproteomics and western blot analysis showed that NaF treatment enhanced PRKAA1 phosphorylation. Remarkably, the application of both 3-methyladenosine (3-MA; autophagy inhibitor) and dorsomorphin (DM; AMPK inhibitor) suppressed NaF-induced neuronal apoptosis by restoring aberrant mitophagy. In addition, 3-MA attenuated an increase in p62 protein levels and NaF-induced autophagic degradation. Collectively, our findings indicated that NaF causes aberrant mitophagy via PRKAA1 in a PINK1/Parkin-dependent manner, which triggers neuronal apoptosis. Thus, regulating PRKAA1-activated PINK1/Parkin-dependent mitophagy may be a potential treatment for NaF-induced developmental neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。