Characterization of human islet function in a convection-driven intravascular bioartificial pancreas

对流驱动的血管内生物人工胰腺中人类胰岛功能的表征

阅读:5
作者:Ana G Santandreu, Parsa Taheri-Tehrani, Benjamin Feinberg, Alonso Torres, Charles Blaha, Rebecca Shaheen, Jarrett Moyer, Nathan Wright, Gregory L Szot, William H Fissell, Shant Vartanian, Andrew Posselt, Shuvo Roy

Abstract

Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection-driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nanopore membranes (SNM) holds promise to sustain islet function without the need for immunosuppressants. Here, we investigate short-term functionality of encapsulated human islets in an iBAP prototype. Using the finite element method (FEM), we calculated predicted oxygen profiles within islet scaffolds at normalized perifusion rates of 14-200 nl/min/IEQ. The modeling showed the need for minimum in vitro and in vivo islet perifusion rates of 28 and 100 nl/min/IEQ, respectively to support metabolic insulin production requirements in the iBAP. In vitro glucose-stimulated insulin secretion (GSIS) profiles revealed a first-phase response time of <15 min and comparable insulin production rates to standard perifusion systems (~10 pg/min/IEQ) for perifusion rates of 100-200 nl/min/IEQ. An intravenous glucose tolerance test (IVGTT), performed at a perifusion rate of 100-170 nl/min/IEQ in a non-diabetic pig, demonstrated a clinically relevant C-peptide production rate (1.0-2.8 pg/min/IEQ) with a response time of <5 min.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。