The Application of Polyurethane-LiClO4 to Modify Screen-Printed Electrodes Analyzing Histamine in Mackerel Using a Voltammetric Approach

聚氨酯-LiClO4 修饰丝网印刷电极用于伏安法分析鲭鱼中的组胺

阅读:7
作者:Muhammad Abdurrahman Munir, Khairiah Haji Badri, Lee Yook Heng, Ahlam Inayatullah, Eva Nurinda, Daru Estiningsih, Annisa Fatmawati, Veriani Aprilia, Nur Syafitri

Abstract

Histamine is an important substance that can be applied as a parameter for allergic reactions and food freshness. This study develops a method to produce a histamine sensor based on electrodes modified using polyurethane-LiClO4. A sensor method was developed where this sensor was produced from polyurethane. The application of 4,4'-diphenylmethane diisocyanate (hard compound) and palm kernel oil-based monoester polyol (soft compound) to produce polyurethane (PU) based on bio-polyol. The addition of lithium perchlorate (LiClO4) was done in order to increase the conductivity of PU. The oxidation process was detected using cyclic voltammetry, whereas the electrochemical impedance spectroscopy was used to analyze the conductivity of the polymer. The polyurethane-LiClO4 was attached on a screen-printed electrode (SPE) within 45 min. Moreover, the 1% LiClO4-PU-SPE presented satisfactory selectivity for the detection of histamine in the pH 7.5 solution. The LiClO4-PU-SPE presented a good correlation coefficient (R = 0.9991) in the range 0.015-1 mmol·L-1. The detection limit was 0.17 mmol·L-1. Moreover, the histamine concentration of mackerel samples was detected by the PU-SEP-LiClO4. Several amine compounds were chosen to study the selectivity of histamine detection using SPE-PU-LiClO4. The interference was from several major interfering compounds such as aniline, cadaverine, hexamine, putrescine, and xanthine. The technique showed a satisfactory selective analysis compared to the other amines. A satisfactory recovery performance toward varying concentrations of histamine was obtained at 94 and 103% for histamine at 0.01 and 0.1 mmol·L-1, respectively. The application of PU-SEP-LiClO4 as an electrochemical sensor has a great prospect to analyze histamine content in fish mackerel as a consequence of PU-SEP-LiClO4 having good selectivity and simplicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。