Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2

机器学习驱动和基于智能手机的荧光检测,用于 SARS-CoV-2 的 CRISPR 诊断

阅读:6
作者:Aubin Samacoits, Pattaraporn Nimsamer, Oraphan Mayuramart, Naphat Chantaravisoot, Pitchaya Sitthi-Amorn, Chajchawan Nakhakes, Lumrung Luangkamchorn, Phongsakhon Tongcham, Ugo Zahm, Suchada Suphanpayak, Natta Padungwattanachoke, Nutcha Leelarthaphin, Hathaichanok Huayhongthong, Trairak Pisitkun, Sunc

Abstract

Rapid, accurate, and low-cost detection of SARS-CoV-2 is crucial to contain the transmission of COVID-19. Here, we present a cost-effective smartphone-based device coupled with machine learning-driven software that evaluates the fluorescence signals of the CRISPR diagnostic of SARS-CoV-2. The device consists of a three-dimensional (3D)-printed housing and low-cost optic components that allow excitation of fluorescent reporters and selective transmission of the fluorescence emission to a smartphone. Custom software equipped with a binary classification model has been developed to quantify the acquired fluorescence images and determine the presence of the virus. Our detection system has a limit of detection (LoD) of 6.25 RNA copies/μL on laboratory samples and produces a test accuracy of 95% and sensitivity of 97% on 96 nasopharyngeal swab samples with transmissible viral loads. Our quantitative fluorescence score shows a strong correlation with the quantitative reverse transcription polymerase chain reaction (RT-qPCR) Ct values, offering valuable information of the viral load and, therefore, presenting an important advantage over nonquantitative readouts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。