Fluorescent Protein Variants Generated by Reassembly between Skeleton and Chromophore

通过骨架和发色团重组产生的荧光蛋白变体

阅读:12
作者:Tingting Sun, Tianpeng Li, Ke Yi, Guoquan Yan, Xiaolian Gao

Abstract

Fluorescent proteins (FPs) can be used as intrinsic molecular tags to track the dynamic activity in live cells. To obtain variants in an available and massive manner is always a challenge. Here, we adopted a computer-based microarray synthesis method to realize the reassembly between the chromophore and the skeleton. DNAWorks was used to segment the input FP templates into a set of overlapping oligonucleotides (20-43 mer) with a balanced annealing temperature, G + C content, and codon frequency. The constitution of the chromophore was kept in the same section by switching the divided sites during segmentation and the codon was optimized to further keep the balanced parameters. The designed oligonucleotides were synthesized on photo-programmable microfluidic arrays. Sequence analysis and the subsequent conditional induced expression of FPs revealed that oligonucleotides were highly reassembled. Spectra, photostability, and molecular size detection of randomly selected variants showed that they were distinct monomeric proteins that preserved photoactivity. Our study provides an effective means of obtaining FP variants based on a computer-designed parallel synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。