The contribution of Kv2.2-mediated currents decreases during the postnatal development of mouse dorsal root ganglion neurons

Kv2.2介导的电流贡献在小鼠背根神经节神经元出生后发育过程中减少

阅读:6
作者:Glenn Regnier, Elke Bocksteins, Gerda Van de Vijver, Dirk J Snyders, Pierre-Paul van Bogaert

Abstract

Delayed rectifier voltage-gated K(+)(Kv) channels play an important role in the regulation of the electrophysiological properties of neurons. In mouse dorsal root ganglion (DRG) neurons, a large fraction of the delayed rectifier current is carried by both homotetrameric Kv2 channels and heterotetrameric channels consisting of Kv2 and silent Kv (KvS) subunits (i.e., Kv5-Kv6 and Kv8-Kv9). However, little is known about the contribution of Kv2-mediated currents during the postnatal development ofDRGneurons. Here, we report that the Stromatoxin-1 (ScTx)-sensitive fraction of the total outward K(+)current (IK) from mouseDRGneurons gradually decreased (~13%,P < 0.05) during the first month of postnatal development. Because ScTx inhibits both Kv2.1- and Kv2.2-mediated currents, this gradual decrease may reflect a decrease in currents containing either subunit. However, the fraction of Kv2.1 antibody-sensitive current that only reflects the Kv2.1-mediated currents remained constant during that same period. These results suggested that the fractional contribution of Kv2.2-mediated currents relative toIKdecreased with postnatal age. SemiquantitativeRT-PCRanalysis indicated that this decrease can be attributed to developmental changes in Kv2.2 expression as themRNAlevels of the Kv2.2 subunit decreased gradually between 1 and 4 weeks of age. In addition, we observed age-dependent fluctuations in themRNAlevels of the Kv6.3, Kv8.1, Kv9.1, and Kv9.3 subunits. These results support an important role of both Kv2 and KvS subunits in the postnatal maturation ofDRGneurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。