Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation

通过同时靶向 DNA 和 E2F1 甲基化重新激活乳腺癌中的肿瘤抑制因子 RASSF1A

阅读:5
作者:María F Montenegro, Magali Sáez-Ayala, Antonio Piñero-Madrona, Juan Cabezas-Herrera, José Neptuno Rodríguez-López

Background

Tumour suppressor genes are often transcriptionally silenced by promoter hypermethylation, and recent research has implicated alterations in chromatin structure as the mechanistic basis for this repression. In addition to DNA methylation, other epigenetic post-translational modifications that modulate the stability and binding of specific transcription factors to gene promoters have emerged as important mechanisms for controlling gene expression. The

Methods

Compounds that modulate the intracellular concentration of adenosine, such as dipyridamole (DIPY), greatly increase the antiproliferative effects of 3-O-(3,4,5-trimethoxybenzoyl)-(-)-catechin (TMCG), a synthetic antifolate derived from the structure of tea catechins. Quantitative real-time PCR arrays and MALDI-TOF mass spectrometry indicated that this combination (TMCG/DIPY) induced apoptosis in breast cancer cells by modulating the methylation levels of DNA and proteins (such as E2F1), respectively. Chromatin immunoprecipitation (ChIP) assays were employed to confirm that this combination induced chromatin remodelling of the RASSF1A promoter and increased the occupancy of E2F1 at the promoter of this tumour suppressor gene.

Results

The TMCG/DIPY combination acted as an epigenetic treatment that reactivated RASSF1A expression and induced apoptosis in breast cancer cells. In addition to modulating DNA methylation and chromatin remodelling, this combination also induced demethylation of the E2F1 transcription factor. The ChIP assay showed enhancement of E2F1 occupancy at the unmethylated RASSF1A promoter after TMCG/DIPY treatment. Interestingly, inhibition of E2F1 demethylation using an irreversible inhibitor of lysine-specific demethylase 1 reduced both TMCG/DIPY-mediated RASSF1A expression and apoptosis in MDA-MB-231 cells, suggesting that DNA and protein demethylation may act together to control these molecular and cellular processes. Conclusions/significance: This study demonstrates that simultaneous targeting of DNA and E2F1 methylation is an effective epigenetic treatment that reactivates RASSF1A expression and induces apoptosis in breast cancer cells.

Significance

This study demonstrates that simultaneous targeting of DNA and E2F1 methylation is an effective epigenetic treatment that reactivates RASSF1A expression and induces apoptosis in breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。