Background
Magnesium (Mg2+)-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells (DPSCs), but the regulatory mechanisms remain undefined. The
Conclusions
Mg2+-enriched microenvironment promotes odontogenic differentiation in DPSCs by activating ERK/BMP2/Smads signaling via intracellular Mg2+ increase. This study revealed that Mg2+-enriched microenvironment could be used as a new strategy for dental pulp regeneration.
Methods
DPSCs underwent culture in odontogenic medium with the addition of 0, 1, 5, or 10 mM MgCl2. Intracellular Mg2+ levels in DPSCs were evaluated flow cytometrically using Mag-Fluo-4-AM. Mg2+-entry was inhibited by TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB). RNA-Sequencing was carried out for assessing transcriptome alterations in DPSCs during odontogenic differentiation associated with high extracellular Mg2+. KEGG pathway analysis was performed to determine pathways related to the retrieved differentially expressed genes (DEGs). Immunoblot was performed for assessing magnesium's role and exploring ERK/BMP2/Smads signaling.
Results
Mg2+-enriched microenvironment promoted odontogenic differentiation in DPSCs via intracellular Mg2+ increase. Consistently, the positive effect of high extracellular Mg2+ on odontogenic differentiation in DPSCs was blocked by 2-APB, which reduced Mg2+ entry. RNA-sequencing identified 734 DEGs related to odontogenic differentiation in DPSCs in the presence of high extracellular Mg2+. These DEGs participated in many cascades such as MAPK and TGF-β pathways. Consistently, ERK and BMP2/Smads pathways were activated in DPSCs treated with high extracellular Mg2+. In agreement, ERK signaling inhibition by U0126 blunted the effect of high extracellular Mg2+ on mineralization and odontogenic differentiation in DPSCs. Interestingly, BMP2, BMPR1, and phosphorylated Smad1/5/9 were significantly decreased by U0126, indicating that BMP2/Smads acted as downstream of ERK. Conclusions: Mg2+-enriched microenvironment promotes odontogenic differentiation in DPSCs by activating ERK/BMP2/Smads signaling via intracellular Mg2+ increase. This study revealed that Mg2+-enriched microenvironment could be used as a new strategy for dental pulp regeneration.
