Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects

S279/282 上的连接蛋白 43 磷酸化可能导致层蛋白病相关的传导缺陷

阅读:9
作者:Steven C Chen, Brian K Kennedy, Paul D Lampe

Abstract

An understanding of the molecular mechanism behind the arrhythmic phenotype associated with laminopathies has yet to emerge. A-type lamins have been shown to interact and sequester activated phospho-ERK1/2(pERK1/2) at the nucleus. The gap junction protein connexin43 (Cx43) can be phosphorylated by pERK1/2 on S279/282 (pS279/282), inhibiting intercellular communication. We hypothesized that without A-type lamins, pS279/282 Cx43 will increase due to inappropriate phosphorylation by pERK1/2, resulting in decreased gap junction function. We observed a 1.6-fold increase in pS279/282 Cx43 levels in Lmna(-/-) mouse embryonic fibroblasts (MEFs) compared to Lmna(+/+), and 1.8-fold more pERK1/2 co-precipitated from Lmna(-/-) MEFs with Cx43 antibodies. We found a 3-fold increase in the fraction of non-nuclear pERK1/2 and a concomitant 2-fold increase in the fraction of pS279/282 Cx43 in Lmna(-/-) MEFs by immunofluorescence. In an assay of gap junctional function, Lmna(-/-) MEFs transferred dye to 60% fewer partners compared to Lmna(+/+) controls. These results are mirrored in 5-6 week-old Lmna(-/-) mice compared to their Lmna(+/+) littermates as we detect increased pS279/282 Cx43 in gap junctions by immunofluorescence and 1.7-fold increased levels by immunoblot. We conclude that increased pS279/282 Cx43 in the Lmna(-/-) background results in decreased cell communication and may contribute to the arrhythmic pathology in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。