Artificial Lipid Biomembranes for Full-Length SARS-CoV-2 Receptor

全长 SARS-CoV-2 受体的人工脂质生物膜

阅读:7
作者:Ting Wang, Xiaomei Lin, Yuting Li, Yuan Lu

Abstract

The angiotensin-converting enzyme 2 (ACE2), as a functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for assessing potential hosts and treatments. However, many studies are based on its truncated version but not full-length structure. Indeed, a single transmembrane (TM) helix presents in the full-length ACE2, influencing its interaction with SARS-CoV-2. Therefore, synthesis of the full-length ACE2 is an urgent requirement. Here, cell-free membrane protein synthesis systems (CFMPSs) are constructed for full-length membrane proteins. MscL is screened as a model among ten membrane proteins based on their expression and solubility. Next, CFMPSs are constructed and optimized based on natural vesicles, vesicles with four membrane proteins removed or two chaperonins added, and 37 types of nanodiscs. They all increase membrane protein solubility to over 50%. Finally, the full-length ACE2 of 21 species are successfully expressed with yields between 0.4 and 0.9 mg mL-1 . The definite functional differences from the truncated version suggest that the TM region affects ACE2's structure and function. CFMPSs can be extended to more membrane proteins, paving the way for further applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。