Ascorbate Oxidation by Cu(Amyloid-β) Complexes: Determination of the Intrinsic Rate as a Function of Alterations in the Peptide Sequence Revealing Key Residues for Reactive Oxygen Species Production

铜(淀粉样蛋白-β)复合物氧化抗坏血酸:根据肽序列变化确定固有速率,揭示活性氧物质产生的关键残基

阅读:5
作者:Elena Atrián-Blasco, Melisa Del Barrio, Peter Faller, Christelle Hureau

Abstract

Along with aggregation of the amyloid-β (Aβ) peptide and subsequent deposit of amyloid plaques, oxidative stress is an important feature in Alzheimer's disease. Cu bound to Aβ is able to produce reactive oxygen species (ROS) by the successive reductions of molecular dioxygen, and the ROS produced contribute to oxidative stress. In vitro, ascorbate consumption parallels ROS production, where ascorbate is the reductant that fuels the reactions. Because the affinity of Cu for Aβ is moderate compared to other biomolecules, the rate of ascorbate consumption is a combination of two contributions. The first one is due to peptide-unbound Cu and the second one to peptide-bound Cu complexes. In the present Article, we aim to determine the amounts of the second contribution in the global ascorbate consumption process. It is defined as the intrinsic rate of ascorbate oxidation, which mathematically corresponds to the rate at an infinite peptide to Cu ratio, i.e., without any contribution from peptide-unbound Cu. We show that, for the wild-type Cu(Aβ) complex, this value equals 10% of the value obtained for peptide-unbound Cu and that this value is strongly dependent on peptide alterations. By examination of the dependence of the intrinsic rate of ascorbate oxidation, followed by UV-vis spectroscopy, for several altered peptides, we determine some of the key residues that influence ROS production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。