RARγ is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells

RARγ 对视黄酸诱导的胚胎干细胞染色质重塑和转录激活至关重要

阅读:5
作者:Vasundhra Kashyap, Kristian B Laursen, Fabienne Brenet, Agnes J Viale, Joseph M Scandura, Lorraine J Gudas

Abstract

We have utilized retinoic acid receptor γ (gamma) knockout (RARγ(-/-)) embryonic stem (ES) cells as a model system to analyze RARγ mediated transcriptional regulation of stem cell differentiation. Most of the transcripts regulated by all-trans retinoic acid (RA) in ES cells are dependent upon functional RARγ signaling. Notably, many of these RA-RARγ target genes are implicated in retinoid uptake and metabolism. For instance, Lrat (lecithin:retinol acyltransferase), Stra6 (stimulated by retinoic acid 6), Crabp2 (cellular retinoic acid binding protein 2), and Cyp26a1 (cytochrome p450 26a1) transcripts are induced in wild type (WT), but not in RARγ(-/-) cells. Transcripts for the transcription factors Pbx1 (pre-B cell leukemia homeobox-1), Wt1 (Wilm's tumor gene-1), and Meis1 (myeloid ecotropic viral integration site-1) increase upon RA treatment of WT, but not RARγ(-/-) cells. In contrast, Stra8, Dleu7, Leftb, Pitx2, and Cdx1 mRNAs are induced by RA even in the absence of RARγ. Mapping of the epigenetic signature of Meis1 revealed that RA induces a rapid increase in the H3K9/K14ac epigenetic mark at the proximal promoter and at two sites downstream of the transcription start site in WT, but not in RARγ(-/-) cells. Thus, RA-associated increases in H3K9/K14ac epigenetic marks require RARγ and are associated with increased Meis1 transcript levels, whereas H3K4me3 is present at the Meis1 proximal promoter even in the absence of RARγ. In contrast, at the Lrat proximal promoter primarily the H3K4me3 mark, and not the H3K9/K14ac mark, increases in response to RA, independently of the presence of RARγ. Our data show major epigenetic changes associated with addition of the RARγ agonist RA in ES cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。