A Portable Readout System for Biomarker Detection with Aptamer-Modified CMOS ISFET Array

采用适体修饰的 CMOS ISFET 阵列进行生物标志物检测的便携式读出系统

阅读:7
作者:Dmitriy Ryazantsev, Mark Shustinskiy, Andrey Sheshil, Alexey Titov, Vitaliy Grudtsov, Valerii Vechorko, Irakli Kitiashvili, Kirill Puchnin, Alexander Kuznetsov, Natalia Komarova

Abstract

Biosensors based on ion-sensitive field effect transistors (ISFETs) combined with aptamers offer a promising and convenient solution for point-of-care testing applications due to the ability for fast and label-free detection of a wide range of biomarkers. Mobile and easy-to-use readout devices for the ISFET aptasensors would contribute to further development of the field. In this paper, the development of a portable PC-controlled device for detecting aptamer-target interactions using ISFETs is described. The device assembly allows selective modification of individual ISFETs with different oligonucleotides. Ta2O5-gated ISFET structures were optimized to minimize trapped charge and capacitive attenuation. Integrated CMOS readout circuits with linear transfer function were used to minimize the distortion of the original ISFET signal. An external analog signal digitizer with constant voltage and superimposed high-frequency sine wave reference voltage capabilities was designed to increase sensitivity when reading ISFET signals. The device performance was demonstrated with the aptamer-driven detection of troponin I in both reference voltage setting modes. The sine wave reference voltage measurement method reduced the level of drift over time and enabled a lowering of the minimum detectable analyte concentration. In this mode (constant voltage 2.4 V and 10 kHz 0.1Vp-p), the device allowed the detection of troponin I with a limit of detection of 3.27 ng/mL. Discrimination of acute myocardial infarction was demonstrated with the developed device. The ISFET device provides a platform for the multiplexed detection of different biomarkers in point-of-care testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。