Microbiological Mechanisms of Collaborative Remediation of Cadmium-Contaminated Soil with Bacillus cereus and Lawn Plants

蜡状芽孢杆菌与草坪植物协同修复镉污染土壤的微生物学机制

阅读:5
作者:Beibei Zhou, Zehao Yang, Xiaopeng Chen, Ruonan Jia, Shaoxiong Yao, Bin Gan, Dongliang Fan, Xie Yang, Wenqian Li, Yunhan Chen

Abstract

Severe cadmium contamination poses a serious threat to food security and human health. Plant-microbial combined remediation represents a potential technique for reducing heavy metals in soil. The main objective of this study is to explore the remediation mechanism of cadmium-contaminated soil using a combined approach of lawn plants and microbes. The target bacterium Bacillus cereus was selected from cadmium-contaminated soil in mining areas, and two lawn plants (Festuca arundinacea A'rid III' and Poa pratensis M'idnight II') were chosen as the target plants. We investigated the remediation effect of different concentrations of bacterial solution on cadmium-contaminated soil using two lawn plants through pot experiments, as well as the impact on the soil microbial community structure. The results demonstrate that Bacillus cereus promotes plant growth, and the combined action of lawn plants and Bacillus cereus improves soil quality, enhancing the bioavailability of cadmium in the soil. At a bacterial suspension concentration of 105 CFU/mL, the optimal remediation treatment was observed. The removal efficiency of cadmium in the soil under Festuca arundinacea and Poa pratensis treatments reached 33.69% and 33.33%, respectively. Additionally, the content of bioavailable cadmium in the rhizosphere soil increased by up to 13.43% and 26.54%, respectively. Bacillus cereus increased the bacterial diversity in the non-rhizosphere soil of both lawn plants but reduced it in the rhizosphere soil. Additionally, the relative abundance of Actinobacteriota and Firmicutes, which have potential for heavy metal remediation, increased after the application of the bacterial solution. This study demonstrates that Bacillus cereus can enhance the potential of lawn plants to remediate cadmium-contaminated soil and reshape the microbial communities in both rhizosphere and non-rhizosphere soils.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。