Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation

尤文氏肉瘤对 SP-2509 的耐药性不是通过 KDM1A/LSD1 突变介导的

阅读:6
作者:Kathleen I Pishas, Stephen L Lessnick

Abstract

Ewing sarcoma is the second most common solid bone malignancy diagnosed in pediatric and young adolescent populations. Despite global co-operative efforts, outcomes for patients with relapsed and refractory disease remains obstinately poor. It has become increasingly clear that disruption of the epigenome as a result of alterations in epigenetic regulators, plays a pivotal role in tumorigenesis. As such, this study investigated Ewing sarcoma mechanisms of acquired resistance to the small molecule reversible lysine specific demethylase (LSD1/KDM1A) inhibitor SP-2509. Surprisingly, whole exome sequencing analysis of our generated A673 SP-2509 drug resistant cell line revealed an absence of mutations in KDM1A. Compared to parental counterparts, SP-2509 drug resistant cells demonstrated decreased anchorage independent growth capacity, enhanced sensitivity to the HDAC inhibitors vorinostat/entinostat and a distinct transcriptional profile that was enriched for extracellular matrix proteins. SP-2509 drug resistant cells also exhibited elevated expression levels of the multi-drug resistance genes ABCB1, ABCC3, and ABBC5 and decreased expression of the transcriptional repressor RCOR1/CoREST. Following several months of SP-2509 withdrawal, low level SP-2509 resistance was still apparent (6.3 fold increase in IC50), with drug resistant cell populations maintaining their distinct transcriptional profile. Furthermore, compared to parental cells, washout drug resistant lines displayed equal sensitivity to the standard Ewing sarcoma chemotherapeutic agent's vincristine and doxorubicin. Together these findings indicate that resistance to SP-2509 is not fully reversible or driven by direct mutation in KDM1A.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。