Neurotoxicity and biomarkers of zinc oxide nanoparticles in main functional brain regions and dopaminergic neurons

氧化锌纳米粒子在主要功能脑区和多巴胺能神经元中的神经毒性和生物标志物

阅读:7
作者:Huanliang Liu, Honglian Yang, Yanjun Fang, Kang Li, Lei Tian, Xiaohua Liu, Wei Zhang, Yizhe Tan, Wenqing Lai, Liping Bian, Bencheng Lin, Zhuge Xi

Abstract

Manufactured zinc oxide nanoparticles (Nano-ZnO) are being used increasingly in many fields owing to their excellent physicochemical properties. Consequently, biosecurity has become a growing concern for human health and the environment. In the present study, Nano-ZnO neurotoxicity was investigated in vivo and in vitro. In vivo results showed that Nano-ZnO particles delivered through intranasal instillation were translocated to the brain, specifically deposited in the olfactory bulb, hippocampus, striatum, and cerebral cortex, and caused ultrastructural changes, oxidative damage, inflammatory responses, and histopathological damages there, which may be important for inducing Nano-ZnO neurotoxicity. Further in vitro studies on PC12 cell line illustrated that exposure to Nano-ZnO for 6 h affected cell morphology, decreased cell viability, increased lactate dehydrogenase and oxidative stress activity levels, impaired mitochondrial function, and disturbed the cell cycle. In addition, Nano-ZnO could destroy neuronal structure by affecting cytoskeleton proteins (tubulin-α, tubulin-β and NF-H), resulting in the interruption of connection between nerve cells, which lead to nervous system function damage. Meanwhile, Nano-ZnO could induce neuronal repair and regeneration disorders by affecting the growth-related protein GAP-43 and delayed neurotoxicity by affecting the calcium/calcium-regulated kinase (CAMK2A/CAMK2B protein) signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。