SiO2-induced ferroptosis in macrophages promotes the development of pulmonary fibrosis in silicosis models

SiO2 诱导的巨噬细胞铁死亡促进矽肺模型中肺纤维化的发展

阅读:5
作者:Taiyang Liu, Rui Bao, Qiushi Wang, Wei Hao, Yaoyang Liu, Sirong Chang, Meng Wang, Yuanyuan Li, Zhihong Liu, Yue Sun

Abstract

Silicosis is a devastating disease that, without effective treatment, endangers the health of miners. Therefore, studies exploring the pathogenesis of SiO2-induced pulmonary fibrosis are necessary to develop treatments for silicosis. Although macrophages are known to play a pivotal role in SiO2-induced pulmonary fibrosis, the underlying mechanism remains unknown. Here, we explored whether ferroptosis was involved in SiO2-induced pulmonary fibrosis. To this end, C57BL/6 mice and mouse macrophage (RAW264.7) cells and mouse lung fibroblast (MLF) cells were subjected to iron content, cell viability, enzyme-linked immunosorbent assay, immunofluorescence staining, histological, western blotting, quantitative reverse transcription-PCR, reactive oxygen species, and lipid peroxidation analysis. In vivo, SiO2 was found to damage the lung alveolar structure, cause infiltration of inflammatory cells, and facilitate fibrosis. Additionally, it increased the iron concentration and lipid peroxidation as well as altered the expression of ferroptosis-related genes and the mitochondrial morphology in macrophages. In vitro, ferroptosis occurred in SiO2-treated RAW264.7 cells, which showed iron overload, lipid peroxidation, and gene alterations. Furthermore, ferrostatin-1 (Fer-1) attenuated ferroptosis in SiO2-treated RAW264.7 cells by inhibiting lipid peroxidation and cell death and regulating ferroptosis-related genes expression, in addition to attenuating the secretion of pro-fibrotic cytokines and fibrosis. Collectively, SiO2 induces ferroptosis in macrophages, which leads to the secretion of pro-fibrotic cytokines and fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。