Desipramine protects neuronal cell death and induces heme oxygenase-1 expression in Mes23.5 dopaminergic neurons

地昔帕明防止神经元细胞死亡并诱导 Mes23.5 多巴胺能神经元中血红素加氧酶-1 的表达

阅读:4
作者:Hsiao-Yun Lin, Wei-Lan Yeh, Bor-Ren Huang, Chingju Lin, Chih-Ho Lai, Ho Lin, Dah-Yuu Lu

Background

Desipramine is known principally as a tricyclic antidepressant drug used to promote recovery of depressed patients. It has also been used in a number of other psychiatric and medical conditions. The present study is the first to investigate the neuroprotective effect of desipramine. Methodology/principal findings: Mes23.5 dopaminergic cells were used to examine neuroprotective effect of desipramine. Western blot, reverse transcription-PCR, MTT assay, siRNA transfection and electrophoretic mobility shift assay (EMSA) were carried out to assess the effects of desipramine. Desipramine induces endogenous anti-oxidative enzyme, heme oxygenase-1 (HO-1) protein and mRNA expression in concentration- and time-dependent manners. A different type of antidepressant SSRI (selective serotonin reuptake inhibitor), fluoxetine also shows similar effects of desipramine on HO-1 expression. Moreover, desipramine induces HO-1 expression through activation of ERK and JNK signaling pathways. Desipramine also increases NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and enhances Nrf2-DNA binding activity. Moreover, desipramine-mediated increase of HO-1 expression is reduced by transfection with siRNA against Nrf2. On the other hand, pretreatment of desipramine protects neuronal cells against rotenone- and 6-hydroxydopamine (6-OHDA)-induced neuronal death. Furthermore, inhibition of HO-1 activity by a HO-1 pharmacological inhibitor, ZnPP IX, attenuates the neuroprotective effect of desipramine. Otherwise, activation of HO-1 activity by HO-1 activator and inducer protect 6-OHDA-induced neuronal death. Conclusions/significance: These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our

Significance

These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our results also suggest that desipramine provides a novel effect of neuroprotection, and neurodegenerative process might play an important role in depression disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。