Mixed Matrix Membranes for Efficient CO2 Separation Using an Engineered UiO-66 MOF in a Pebax Polymer

使用 Pebax 聚合物中的工程化 UiO-66 MOF 实现高效 CO2 分离的混合基质膜

阅读:5
作者:Asmaul Husna, Iqubal Hossain, Insu Jeong, Tae-Hyun Kim

Abstract

Mixed matrix membranes (MMMs) have attracted significant attention for overcoming the limitations of traditional polymeric membranes for gas separation through the improvement of both permeability and selectivity. However, the development of defect-free MMMs remains challenging due to the poor compatibility of the metal-organic framework (MOF) with the polymer matrix. Thus, we report a surface-modification strategy for a MOF through grafting of a polymer with intrinsic microporosity onto the surface of UiO-66-NH2. This method allows us to engineer the MOF-polymer interface in the MMMs using Pebax as a support. The insertion of a PIM structure onto the surface of UiO-66-NH2 provides additional molecular transport channels and enhances the CO2 transport by increasing the compatibility between the polymer and fillers for efficient gas separation. As a result, MMM with 1 wt% loading of PIM-grafted-MOF (PIM-g-MOF) exhibited very promising separation performance, with CO2 permeability of 247 Barrer and CO2/N2 selectivity of 56.1, which lies on the 2008 Robeson upper bound. Moreover, this MMM has excellent anti-aging properties for up to 240 days and improved mechanical properties (yield stress of 16.08 MPa, Young's modulus of 1.61 GPa, and 596.5% elongation at break).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。