Autophagy stimulation reduces ocular hypertension in a murine glaucoma model via autophagic degradation of mutant myocilin

自噬刺激通过自噬降解突变的肌动蛋白来降低小鼠青光眼模型中的眼高压

阅读:5
作者:Ramesh B Kasetti, Prabhavathi Maddineni, Charles Kiehlbauch, Shruti Patil, Charles C Searby, Beth Levine, Val C Sheffield, Gulab S Zode

Abstract

Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with primary open-angle glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic causes of POAG. We have previously shown that mutant myocilin accumulates in the ER and induces chronic ER stress, leading to TM damage and IOP elevation. However, it is not understood how chronic ER stress leads to TM dysfunction and loss. Here, we report that mutant myocilin activated autophagy but was functionally impaired in cultured human TM cells and in a mouse model of myocilin-associated POAG (Tg-MYOCY437H). Genetic and pharmacological inhibition of autophagy worsened mutant myocilin accumulation and exacerbated IOP elevation in Tg-MYOCY437H mice. Remarkably, impaired autophagy was associated with chronic ER stress-induced transcriptional factor CHOP. Deletion of CHOP corrected impaired autophagy, enhanced recognition and degradation of mutant myocilin by autophagy, and reduced glaucoma in Tg-MYOCY437H mice. Stimulating autophagic flux via tat-beclin 1 peptide or torin 2 promoted autophagic degradation of mutant myocilin and reduced elevated IOP in Tg-MYOCY437H mice. Our study provides an alternate treatment strategy for myocilin-associated POAG by correcting impaired autophagy in the TM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。