Environmentally relevant concentration of sulfamethoxazole-induced oxidative stress-cascaded damages in the intestine of grass carp and the therapeutic application of exogenous lycopene

磺胺甲恶唑诱导草鱼肠道氧化应激级联损伤的环境相关浓度及外源番茄红素的治疗应用

阅读:4
作者:Yu Wang, Hongjing Zhao, Yachen Liu, Jingyan Li, Xiaopan Nie, Puyi Huang, Mingwei Xing

Abstract

Due to the unreasonable use and discharge of the aquaculture industry, over standard of the antibiotics has been frequent in different types of water environments, causing adverse effects on aquatic organisms. Lycopene (LYC) is an esculent carotenoid, which is considered to be a strong antioxidant. This study was designed to explore the therapeutic effect of LYC on antibiotic (sulfamethoxazole (SMZ)) induced intestinal injury in grass carp Ctenopharyngodon idella. The 120 carps (the control, LYC, SMZ, and co-administration groups) were treated for 30 days. We found that treatment with LYC significantly suppressed SMZ-induced intestinal epithelial cell damage and tight junction protein destruction through histopathological observation, transmission electron microscopy and detection of related genes (Claudin-1/3/4, Occludin and zonula occludens (ZO)-1/2). Furthermore, LYC mitigated SMZ-induced dysregulation of oxidative stress markers, including elevated malondialdehyde (MDA) levels, and consumed super oxide dimutese (SOD), catalase (CAT) activities and glutathione (GSH) content. In the same treatment, LYC reduced inflammation and apoptosis by a detectable change in pro-inflammatory factors (tumor necrosis factor-alpha (TNF-β), interleukin (IL)-1β, IL-6 and IL-8), anti-inflammatory factors (transforming growth factor-beta (TGF-β) and IL-10) and pro-apoptosis related genes (p53, p53 upregulated modulator of apoptosis (PUMA), Bax/Bcl-2 ratio, caspase-3/9). In addition, activation of autophagy (as indicated by increased autophagy-related genes through AMPK/ATK/MTOR signaling pathway) under the stress of SMZ was also dropped back to the original levels by LYC co-administration. Collectively, our findings identified that LYC can serve as a protectant agent against SMZ-induced intestinal injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。