The Effect of Pre-Electroacupuncture on Nociceptive Discharges of Spinal Wide Dynamic Range Neurons in Rat

预电针对大鼠脊髓宽动态范围神经元痛性放电的影响

阅读:4
作者:Qingquan Yu, Wanying Cao, Xiaoyu Wang, Wei He, Xiaoyue Sun, Lizhen Chen, Yangshuai Su, Zhiyun Zhang, Xianghong Jing

Conclusion

Pre-EA could suppress nociceptive discharges of WDR neurons and the inhibitory effects were dependent on the distinct intensities and locations of stimulation.

Methods

Spinal segments of electrophysiological recording were identified by neural tracers applied at the left gastrocnemius muscle. The thresholds of Aβ (TAβ), Aδ (TAδ) and C (TC) components of WDR neurons were measured to determine the intensity of pre-EA by extracellular recording. The discharges of WDR neurons induced by distinct intensities of pre-EA and 200 µL HS (6%) injection in left gastrocnemius muscle of rats were observed by extracellular recording.

Purpose

Spinal wide dynamic range (WDR) neurons are well studied in pain models and they play critical roles in regulating nociception. Evidence has started to accumulate that acupuncture produces a good analgesic effect via activating different primary fibers with distinct intensities. The purpose of the present study was to compare the distinct intensities of pre-electroacupuncture (pre-EA) at local muscular receptive fields (RFs), adjacent or contralateral non-RFs regulating the nociceptive discharges of spinal WDR neurons evoked by hypertonic saline (HS). Materials and

Results

The spinal segments of WDR neurons were confirmed in lumbar (L)5-6 area according to the projective segments of dorsal root ganglion. TAβ, TAδ and TC of WDR neurons was determined to be 0.5, 1, and 2 mA, respectively. The pre-EA with intensities of TAβ (P < 0.05), TAδ (P < 0.05), TC (P < 0.05) or 2TC (P < 0.01) at ipsilateral adjacent non-RFs significantly reduced the discharges of WDR neurons, while at local RFs only pre-EA of TAδ (P < 0.05), TC (P < 0.05) and 2TC (P < 0.01) could inhibit the nociceptive discharges. In addition, intensity of pre-EA at contralateral non-RFs should reach at least TC to effectively inhibit the firing rates of WDR neurons (P < 0.01).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。