Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation

阿司匹林通过抑制 NF-κB 和 NFATc1 活化来抑制 RANKL 诱导的树突状细胞破骨细胞分化

阅读:8
作者:Lili Wu, Zhenhua Luo, Yitong Liu, Lu Jia, Yiyang Jiang, Juan Du, Lijia Guo, Yuxing Bai, Yi Liu

Background

Aspirin has been demonstrated to promote osteoblast-mediated bone formation and inhibit osteoclast (OC)-mediated bone resorption. However, it remains unclear whether aspirin influences other immune cells during bone resorption. Dendritic cells (DCs), the most potent antigen-presenting cells, can also transdifferentiate into active OCs in the presence of receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The effects of aspirin on DC-derived OCs (DDOCs) were investigated in the current study.

Conclusions

Aspirin inhibited RANKL-induced OC differentiation in DCs via the NF-κB pathway, downregulating expression of NFATc1. Aspirin treatment promoted bone regeneration by inhibiting DDOC activation in the early stages of inflammation in a rat mandibular bone defect model.

Methods

Flow cytometry and mixed lymphocyte reaction (MLR) assays were used for DC identification. The proliferative capacity of DCs was determined by BrdU assays. Apoptosis was examined by flow cytometry. The osteoclastic potential of DCs was tested using tartrate-resistant acid phosphatase (TRAP) staining, western blotting, and reverse transcription polymerase chain reaction (RT-PCR). Western blotting was also used to examine signaling pathways. A mandibular bone defect model was established to assess the effect of aspirin on bone resorption.

Results

Aspirin had no influence on the surface phenotype, proliferation, or apoptosis of DCs, though aspirin significantly inhibited osteoclast differentiation in RANKL-stimulated DCs. DC osteoclast differentiation was modulated by aspirin via the nuclear factor kappa B (NF-κB)/nuclear factor of activated T cell, cytoplasmic 1 (NFATc1) signaling pathway. Aspirin treatment also had favorable therapeutic effects on bone regeneration in the bone defect model, and the number of osteoclasts was decreased. Conclusions: Aspirin inhibited RANKL-induced OC differentiation in DCs via the NF-κB pathway, downregulating expression of NFATc1. Aspirin treatment promoted bone regeneration by inhibiting DDOC activation in the early stages of inflammation in a rat mandibular bone defect model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。