A lateral protrusion latticework connects neuroepithelial cells and is regulated during neurogenesis

侧向突起网格连接神经上皮细胞,并在神经发生过程中受到调节

阅读:4
作者:Ioannis Kasioulis, Alwyn Dady, John James, Alan Prescott, Pamela A Halley, Kate G Storey

Abstract

Dynamic contacts between cells within the developing neuroepithelium are poorly understood but play important roles in cell and tissue morphology and cell signalling. Here, using live-cell imaging and electron microscopy we reveal multiple protrusive structures in neuroepithelial apical endfeet of the chick embryonic spinal cord, including sub-apical protrusions that extend laterally within the tissue, and observe similar structures in human neuroepithelium. We characterise the dynamics, shape and cytoskeleton of these lateral protrusions and distinguish them from cytonemes, filopodia and tunnelling nanotubes. We demonstrate that lateral protrusions form a latticework of membrane contacts between non-adjacent cells, depend on actin but not microtubule dynamics, and provide a lamellipodial-like platform for further extending fine actin-dependent filipodia. We find that lateral protrusions depend on the actin-binding protein WAVE1 (also known as WASF1): misexpression of mutant WAVE1 attenuated protrusion and generated a round-ended apical endfoot morphology. However, this did not alter apico-basal cell polarity or tissue integrity. During normal neuronal delamination, lateral protrusions were withdrawn, but precocious protrusion loss induced by mutant WAVE1 was insufficient to trigger neurogenesis. This study uncovers a new form of cell-cell contact within the developing neuroepithelium, regulation of which prefigures neuronal delamination. This article has an associated First Person interview with the first author of the paper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。