Efficient Gene Silencing by Adenine Base Editor-Mediated Start Codon Mutation

通过腺嘌呤碱基编辑器介导的起始密码子突变实现有效的基因沉默

阅读:5
作者:Xinjie Wang, Zhiwei Liu, GuangLei Li, Lu Dang, Shisheng Huang, Lei He, Yu'e Ma, Cong Li, Ming Liu, Guang Yang, Xingxu Huang, Fei Zhou, Xiaodong Ma

Abstract

Traditional CRISPR/Cas9-based gene knockouts are generated by introducing DNA double-strand breaks (DSBs), but this may cause excessive DNA damage or cell death. CRISPR-based cytosine base editors (CBEs) and adenine base editors (ABEs) can facilitate C-to-T or A-to-G exchanges, respectively, without DSBs. CBEs have been employed in a gene knockout strategy: CRISPR-STOP or i-STOP changes single nucleotides to induce in-frame stop codons. However, this strategy is not applicable for some genes, and the unwanted mutations in CBE systems have recently been reported to be surprisingly significant. As a variant, the ABE systems mediate precise editing and have only rare unwanted mutations. In this study, we implemented a new strategy to induce gene silencing (i-Silence) with an ABE-mediated start codon mutation from ATG to GTG or ACG. Using both in vitro and in vivo model systems, we showed that the i-Silence approach is efficient and precise for producing a gene knockout. In addition, the i-Silence strategy can be employed to analyze ~17,804 human genes and can be used to mimic 147 kinds of pathogenic diseases caused by start codon mutations. Altogether, compared to other methods, the ABE-based i-Silence method is a safer gene knockout strategy, and it has promising application potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。