Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females

雌激素受体α的骨骼肌作用对于维持女性的线粒体功能和代谢稳态至关重要

阅读:6
作者:Vicent Ribas, Brian G Drew, Zhenqi Zhou, Jennifer Phun, Nareg Y Kalajian, Teo Soleymani, Pedram Daraei, Kevin Widjaja, Jonathan Wanagat, Thomas Q de Aguiar Vallim, Amy H Fluitt, Steven Bensinger, Thuc Le, Caius Radu, Julian P Whitelegge, Simon W Beaven, Peter Tontonoz, Aldons J Lusis, Brian W Parks,

Abstract

Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。