A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant

表达非 DNA 结合 HSF1 突变体的热应激细胞中的抗氧化反应延迟

阅读:6
作者:Sanne M M Hensen, Lonneke Heldens, Siebe T van Genesen, Ger J M Pruijn, Nicolette H Lubsen

Abstract

To assess the consequences of inactivation of heat shock factor 1 (HSF1) during aging, we analyzed the effect of HSF1 K80Q, a mutant unable to bind DNA, and of dnHSF1, a mutant lacking the activation domain, on the transcriptome of cells 6 and 24 h after heat shock. The primary response to heat shock (6 h recovery), of which 30 % was HSF1-dependent, had decayed 24 h after heat shock in control cells but was extended in HSF1 K80Q and dnHSF1 cells. Comparison with literature data showed that even the HSF1 dependent primary stress response is largely cell specific. HSF1 K80Q, but not HSF1 siRNA-treated, cells showed a delayed stress response: an increase in transcript levels of HSF1 target genes 24 h after heat stress. Knockdown of NRF2, but not of ATF4, c-Fos or FosB, inhibited this delayed stress response. EEF1D_L siRNA inhibited both the delayed and the extended primary stress responses, but had off target effects. In control cells an antioxidant response (ARE binding, HMOX1 mRNA levels) was detected 6 h after heat shock; in HSF1 K80Q cells this response was delayed to 24 h and the ARE complex had a different mobility. Inactivation of HSF1 thus affects the timing and nature of the antioxidant response and NRF2 can activate at least some HSF1 target genes in the absence of HSF1 activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。