Aurora B Kinase Promotes CHIP-Dependent Degradation of HIF1α in Prostate Cancer Cells

Aurora B 激酶促进前列腺癌细胞中 CHIP 依赖性的 HIF1α 降解

阅读:6
作者:Kuntal Biswas, Sukumar Sarkar, Neveen Said, David L Brautigan, James M Larner

Abstract

Hypoxia is a major factor in tumor progression and resistance to therapies, which involves elevated levels of the transcription factor HIF1α. Here, we report that prostate tumor xenografts express high levels of HIF1α and show greatly enhanced growth in response to knockdown of the E3 ligase CHIP (C-terminus of Hsp70-interacting protein). In multiple human prostate cancer cell lines under hypoxia, taxol treatment induces the degradation of HIF1α, and this response is abrogated by knockdown of CHIP, but not by E3 ligase VHL or RACK1. HIF1α degradation is accompanied by loss of function, evidenced by reduced expression of HIF1α-dependent genes. CHIP-dependent HIF1α degradation also occurs in cells arrested in mitosis by nocodazole instead of taxol. Mitotic kinase Aurora B activity is required for taxol-induced HIF1α degradation. Purified Aurora B directly phosphorylates HIF1α at multiple sites, and these modifications enhance its polyubiquitination by CHIP in a purified reconstituted system. Our results show how activation of Aurora B promotes CHIP-dependent degradation of HIF1α in prostate cancer cells. This new knowledge may affect the use of mitotic kinase inhibitors and open new approaches for treatment of hypoxic prostate tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。