An ERK-p38 subnetwork coordinates host cell apoptosis and necrosis during coxsackievirus B3 infection

ERK-p38 子网络协调柯萨奇病毒 B3 感染期间宿主细胞凋亡和坏死

阅读:8
作者:Karin J Jensen, Farshid S Garmaroudi, Jingchun Zhang, Jun Lin, Seti Boroomand, Mary Zhang, Zongshu Luo, Decheng Yang, Honglin Luo, Bruce M McManus, Kevin A Janes

Abstract

The host response to a virus is determined by intracellular signaling pathways that are modified during infection. These pathways converge as networks and produce interdependent phenotypes, making it difficult to link virus-induced signals and responses at a systems level. Coxsackievirus B3 (CVB3) infection induces death of cardiomyocytes, causing tissue damage and virus dissemination, through incompletely characterized host cell signaling networks. We built a statistical model that quantitatively predicts cardiomyocyte responses from time-dependent measurements of phosphorylation events modified by CVB3. Model analysis revealed that CVB3-stimulated cytotoxicity involves tight coupling between the host ERK and p38 MAPK pathways, which are generally thought to control distinct cellular responses. The kinase ERK5 requires p38 kinase activity and inhibits apoptosis caused by CVB3 infection. By contrast, p38 indirectly promotes apoptosis via ERK1/2 inhibition but directly causes CVB3-induced necrosis. Thus, the cellular events governing pathogenesis are revealed when virus-host programs are monitored systematically and deconvolved mathematically.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。