Opposing actions of hippocampus TNFα receptors on limbic seizure susceptibility

海马 TNFα 受体对边缘系统癫痫易感性的对抗作用

阅读:6
作者:Marc S Weinberg, Bonita L Blake, Thomas J McCown

Abstract

Resected epileptic tissues exhibit elements of chronic neuroinflammation that include elevated TNFα and increased TNFα receptor activation, but the seizure related consequences of chronic TNFα expression remain unknown. Twenty four hours after acute limbic seizures the rat hippocampus exhibited a rapid upregulation of TNFR1, but a simultaneous downregulation of TNFR2. These limbic seizures also evoked significant increases in measures of neuroinflammation and caused significant neuronal cell death in both the hilus and CA3 of the hippocampus. In order to mimic a state of chronic TNFα exposure, adeno-associated viral vectors were packaged with a TNF receptor 1 (TNFR1) specific agonist, human TNFα, or a TNF receptor 1/2 agonist, rat TNFα. Subsequently, chronic hippocampal overexpression of either TNFR ligand caused microglial activation and blood-brain barrier compromise, a pattern similar to limbic seizure-induced neuroinflammation. However, no evidence was found for neuronal cell death or spontaneous seizure activity. Thus, chronic, in vivo TNFα expression and the subsequent neuroinflammation alone did not cause cell death or elicit seizure activity. In contrast, chronic hippocampal activation of TNFR1 alone significantly increased limbic seizure sensitivity in both amygdala kainic acid and electrical amygdala kindling models, while chronic activation of both TNFR1 and TNFR2 significantly attenuated the amygdala kindling rate. With regard to endogenous TNFα, chronic hippocampal expression of a TNFα decoy receptor significantly reduced seizure-induced cell death in the hippocampus, but did not alter seizure susceptibility. These findings suggest that blockade of endogenous TNFα could attenuate seizure related neuropathology, while selective activation of TNFR2 could exert beneficial therapeutic effects on in vivo seizure sensitivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。