SPIN90 phosphorylation modulates spine structure and synaptic function

SPIN90 磷酸化调节脊柱结构和突触功能

阅读:5
作者:In Ha Cho, Dae Hwan Kim, Min-Jung Lee, Jeomil Bae, Kun Ho Lee, Woo Keun Song

Abstract

The correct rearrangement of postsynaptic components in dendritic spines is important for driving changes of spine structure and synaptic function. SPIN90 plays an essential role in many cellular processes including actin polymerization, endocytosis, growth cone formation and dendritic spine morphogenesis. Here, we demonstrate that SPIN90, which is a binding partner of PSD95 and Shank in spines, is targeted to synapses and leads to enhanced synaptic activity in neurons. We show, using in vitro and in vivo kinase assays, that SPIN90 is tyrosine phosphorylated by Src kinase. SPIN90 that was tyrosine-phosphorylated by Src was targeted to dendritic spines in cultured hippocampal neurons. Moreover, a SPIN90 phospho-deficient mutant was unable to accumulate at dendritic spines whereas SPIN90 WT and a phospho-mimicking mutant were localized at spines and bound PSD95 and Shank with increased efficiency. Consistent with these findings, hippocampal neurons that overexpressed SPIN90 WT or a phospho-mimicking mutant had enlarged spine heads, leading to enhanced postsynaptic function in terms of both amplitude and frequency. Together, our findings show that SPIN90 modulates synaptic activity in neurons as a result of its phosphorylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。