Epigallocatechin Gallate with Potent Anti- Helicobacter pylori Activity Binds Efficiently to Its Histone-like DNA Binding Protein

具有强效抗幽门螺杆菌活性的表没食子儿茶素没食子酸酯可有效与其组蛋白样 DNA 结合蛋白结合

阅读:6
作者:Ritu Raj, Nipanshu Agarwal, Sriram Raghavan, Tapati Chakraborti, Krishna Mohan Poluri, Gaurav Pande, Dinesh Kumar

Abstract

Helicobacter pylori (H. pylori)-a human gastric pathogen-forms a major risk factor for the development of various gastric pathologies such as chronic inflammatory gastritis, peptic ulcer, lymphomas of mucosa-associated lymphoid tissues, and gastric carcinoma. The complete eradication of infection is the primary objective of treating any H. pylori-associated gastric condition. However, declining eradication efficiencies, off-target effects, and patient noncompliance to prolong and broad-spectrum antibiotic treatments has spurred the clinical interest to search for alternative effective and safer therapeutic options. As natural compounds are safe and privileged with high levels of antibacterial-activity, previous studies have tested and reported a plethora of such compounds with potential in vitro/in vivo anti-H. pylori activity. However, the mode of action of majority of these natural compounds is unclear. The present study has been envisaged to compile the information of various such natural compounds and to evaluate their binding with histone-like DNA-binding proteins of H. pylori (referred here as Hup) using in silico molecular docking-based virtual screening experiments. Hup-being a major nucleoid-associated protein expressed by H. pylori-plays a strategic role in its survival and persistent colonization under hostile stress conditions. The ligand with highest binding energy with Hup-that is, epigallocatechin-(-)gallate (EGCG)-was rationally selected for further computational and experimental testing. The best docking poses of EGCG with Hup were first evaluated for their solution stability using long run molecular dynamics simulations and then using fluorescence and nuclear magnetic resonance titration experiments which demonstrated that the binding of EGCG with Hup is fairly strong (the resultant apparent dissociation constant (k D) values were equal to 2.61 and 3.29 ± 0.42 μM, respectively).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。