Hydrostatic Pressure Tuning of Thermal Conductivity for PbTe and PbSe Considering Pressure-Induced Phase Transitions

考虑压力诱导相变的 PbTe 和 PbSe 热导率的静水压力调节

阅读:4
作者:Min Zhang, Guihua Tang, Yifei Li

Abstract

Flexibly modulating thermal conductivity is of great significance to improve the application potential of materials. PbTe and PbSe are promising thermoelectric materials with pressure-induced phase transitions. Herein, the lattice thermal conductivities of PbTe and PbSe are investigated as a function of hydrostatic pressure by first-principles calculations. The thermal conductivities of both PbTe and PbSe in NaCl phase and Pnma phase exhibit complex pressure-dependence, which is mainly ascribed to the nonmonotonic variation of a phonon lifetime. In addition, the thermal transport properties of the Pnma phase behave anisotropically. The thermal conductivity of Pnma-PbTe is reduced below 1.1 W/m·K along the c-axis direction at 7-12 GPa. The mean free path for 50% cumulative thermal conductivity increases from 7 nm for NaCl-PbSe at 0 GPa to 47 nm for the Pnma-PbSe in the a-axis direction at 7 GPa, making it convenient for further thermal conductivity reduction by nanostructuring. The thermal conductivities of Pnma-PbTe in the c-axis direction and Pnma-PbSe in the a-axis direction are extremely low and hypersensitive to the nanostructure, showing important potential in thermoelectric applications. This work provides a comprehensive understanding of phonon behaviors to tune the thermal conductivity of PbTe and PbSe by hydrostatic pressure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。