Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer

酸响应性聚集金纳米粒子在食管癌放射增敏和协同化放疗治疗中的应用

阅读:5
作者:Siyuan Luan, Rou Xie, Yushang Yang, Xin Xiao, Jianfeng Zhou, Xiaokun Li, Pinhao Fang, Xiaoxi Zeng, Xiangrong Yu, Meiwan Chen, Huile Gao, Yong Yuan

Abstract

Radiotherapy and chemotherapy are limited by insufficient therapeutic efficacy of low-dose radiation and nonspecific drug biodistribution. Herein, an acid-responsive aggregated nanosystem (AuNPs-D-P-DA) loaded with doxorubicin (DOX) is designed for radiosensitization and synergistic chemoradiotherapy. In response to the acid microenvironment of esophageal cancer (EC), small-sized AuNPs-D-P-DA forms large-sized gold nanoparticle (AuNPs) aggregates in tumor tissues to hinder the backflow of AuNPs to the circulation, resulting in enhanced tumor accumulation and retention. Simultaneously, the AuNPs-based radiosensitization is significantly improved because of the high concentration and large size of intratumoral AuNPs, while DOX are delivered and released specifically into tumor cells triggered by the acid microenvironment for chemo-radio synergistic therapy. Acid-responsive AuNPs exacerbate radiation-induced DNA damage, cell apoptosis, cell cycle arrest, and low colony formation ability in vitro and enhance anti-tumor efficacy in vivo compared to un-responsive control. When combined with acid-responsive DOX, the therapeutic efficacy of the formulation is further improved by their synergistic effect. After the treatment of acid-responsive AuNPs plus radiotherapy, fatty acid metabolism is reprogrammed in xenograft models, which provides potential targets for further improvement of radiosensitization. In summary, the acid-responsive AuNPs-D-P-DA nanosystem leverages the radio- and chemotherapeutic synergies of AuNPs-sensitized X-ray irradiation and acid-responsive DOX in the treatment of EC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。