The novel membrane protein Hoka regulates septate junction organization and stem cell homeostasis in the Drosophila gut

新型膜蛋白 Hoka 调节果蝇肠道隔膜连接组织和干细胞稳态

阅读:5
作者:Yasushi Izumi, Kyoko Furuse, Mikio Furuse

Abstract

Smooth septate junctions (sSJs) regulate the paracellular transport in the intestinal tract in arthropods. In Drosophila, the organization and physiological function of sSJs are regulated by at least three sSJ-specific membrane proteins: Ssk, Mesh and Tsp2A. Here, we report a novel sSJ membrane protein, Hoka, which has a single membrane-spanning segment with a short extracellular region, and a cytoplasmic region with Tyr-Thr-Pro-Ala motifs. The larval midgut in hoka mutants shows a defect in sSJ structure. Hoka forms a complex with Ssk, Mesh and Tsp2A, and is required for the correct localization of these proteins to sSJs. Knockdown of hoka in the adult midgut leads to intestinal barrier dysfunction and stem cell overproliferation. In hoka-knockdown midguts, aPKC is upregulated in the cytoplasm and the apical membrane of epithelial cells. The depletion of aPKC and yki in hoka-knockdown midguts results in reduced stem cell overproliferation. These findings indicate that Hoka cooperates with the sSJ proteins Ssk, Mesh and Tsp2A to organize sSJs, and is required for maintaining intestinal stem cell homeostasis through the regulation of aPKC and Yki activities in the Drosophila midgut.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。