Synergistic effects of lipopolysaccharide and rotenone on dopamine neuronal damage in rats

脂多糖与鱼藤酮对大鼠多巴胺神经元损伤的协同作用

阅读:8
作者:Jing-Yi He, Dai-Di Li, Qian Wen, Ting-Yang Qin, Hong Long, Shi-Bin Zhang, Feng Zhang

Conclusions

Neuroinflammation and oxidative stress synergistically aggravated DA neuronal loss. Furtherly, oxidative stress followed by neuroinflammation caused more DA neuronal loss than neuroinflammation followed by oxidative stress.

Methods

The changes in motor behavior, dopamine (DA) neurons quantification and their mitochondrial respiratory chain, glial cells activation and secreted cytokines, Nrf2 signaling pathway, and redox balance in the brain of rats were evaluated.

Results

Lipopolysaccharide (LPS)-induced neuroinflammation and rotenone (ROT)-induced oxidative stress synergistically aggravated motor dysfunction, DA neuron damage, activation of glial cells, and release of related mediators, activation of Nrf2 signaling and destruction of oxidative balance. In addition, further studies indicated that after ROT-induced oxidative stress caused direct damage to DA neurons, LPS-induced inflammatory effects had stronger promoting neurotoxic effects on the above aspects. Conclusions: Neuroinflammation and oxidative stress synergistically aggravated DA neuronal loss. Furtherly, oxidative stress followed by neuroinflammation caused more DA neuronal loss than neuroinflammation followed by oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。