Sildenafil ameliorates right ventricular early molecular derangement during left ventricular pressure overload

西地那非改善左心室压力超负荷时右心室早期分子紊乱

阅读:8
作者:Yousuke Imai, Taro Kariya, Masaki Iwakiri, Yoshitsugu Yamada, Eiki Takimoto

Abstract

Right ventricular (RV) dysfunction following left ventricular (LV) failure is associated with poor prognosis. RV remodeling is thought initiated by the increase in the afterload of RV due to secondary pulmonary hypertension (PH) to impaired LV function; however, RV molecular changes might occur in earlier stages of the disease. cGMP (cyclic guanosine monophosphate)-phosphodiesterase 5 (PDE5) inhibitors, widely used to treat PH through their pulmonary vasorelaxation properties, have shown direct cardiac benefits, but their impacts on the RV in LV diseases are not fully determined. Here we show that RV molecular alterations occur early in the absence of RV hemodynamic changes during LV pressure-overload and are ameliorated by PDE5 inhibition. Two-day moderate LV pressure-overload (transverse aortic constriction) neither altered RV pressure/ function nor RV weight in mice, while it induced only mild LV hypertrophy. Importantly, pathological molecular features were already induced in the RV free wall myocardium, including up-regulation of gene markers for hypertrophy and inflammation, and activation of extracellular signal-regulated kinase (ERK) and calcineurin. Concomitant PDE5 inhibition (sildenafil) prevented induction of such pathological genes and activation of ERK and calcineurin in the RV as well as in the LV. Importantly, dexamethasone also prevented these RV molecular changes, similarly to sildenafil treatment. These results suggest the contributory role of inflammation to the early pathological interventricular interaction between RV and LV. The current study provides the first evidence for the novel early molecular cross-talk between RV and LV, preceding RV hemodynamic changes in LV disease, and supports the therapeutic strategy of enhancing cGMP signaling pathway to treat heart diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。