Variations of Intracellular Ca2+ Mobilization Initiated by Nanosecond and Microsecond Electrical Pulses in HeLa Cells

纳秒和微秒电脉冲在 HeLa 细胞中引发的细胞内 Ca2+ 动员变化

阅读:6
作者:Nobuaki Ohnishi, Yusuke Fujiwara, Taichi Kamezaki, Sunao Katsuki

Conclusion

These results suggest that the 10-μs PEF takes a large amount of extracellular Na+ into the cell through the electropermeabilized plasma membrane, especially at the anodic side, resulting in the suppression of the Ca2+ influx. On the contrary, the 20-ns-long PEF increased Ca2+ concentration in the surrounding region of the nucleus only in the presence of extracellular Ca2+. The PEF exposure with inhibition of the IP3R indicates that increased Ca2+ ions are released from the ER via the activated IP3R. Significance: These mechanisms could induce specific cell responses, such as Ca2+ oscillations, Ca2+ waves, and Ca2+ puffs.

Methods

Three PEF waveforms categorized by pulse duration and intensity were used to deduce the kinetics involved in Ca2+ mobilization. A fast microscopic fluorescent imaging system and a fluorescent molecular probe were used to observe transient intracellular Ca2+ mobilization after pulse exposure. The sources and pathways in the transient Ca2+ mobilizations were investigated using an inhibitor of inositol-1,4,5-trisphosphate receptor (IP3R) on the endoplasmic reticulum (ER) along with a Ca2+-free buffer.

Results

When exposed to the 10-μs-long PEF, the Ca2+ concentration increased mainly at the cathodic region near the membrane. However, Ca2+ concentration increased at both anodic and cathodic regions when Na+ concentration in the buffer was reduced. Ca2+ concentration increased only in the presence of extracellular Ca2+.

Significance

These mechanisms could induce specific cell responses, such as Ca2+ oscillations, Ca2+ waves, and Ca2+ puffs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。