p62/SQSTM1-dependent autophagy of Lewy body-like α-synuclein inclusions

p62/SQSTM1 依赖的路易体样 α-突触核蛋白内含体的自噬

阅读:5
作者:Yoshihisa Watanabe, Harutsugu Tatebe, Katsutoshi Taguchi, Yasuhisa Endo, Takahiko Tokuda, Toshiki Mizuno, Masanori Nakagawa, Masaki Tanaka

Abstract

α-Synuclein is the main component of Lewy bodies, the intraneuronal inclusion bodies characteristic of Parkinson's disease. Although α-synuclein accumulation is caused by inhibition of proteasome and autophagy-lysosome, the degradation of α-synuclein inclusions is still unknown. Formation of Lewy body-like inclusions can be replicated in cultured cells by introducing α-synuclein fibrils generated in vitro. We used this cell culture model to investigate the autophagy of α-synuclein inclusions and impaired mitochondria. The intracellular α-synuclein inclusions immediately underwent phosphorylation and ubiquitination. Simultaneously they were encircled by an adaptor protein p62/SQSTM1 and directed to the autophagy-lysosome pathway in HEK293 cell line. Most phospho-α-synuclein-positive inclusions were degraded in 24 h, however, lysosomal dysfunction with bafilomycin A1 significantly affected their clearance. Moreover, inhibition of autophagy by Atg-5 siRNA treatment reduced the incorporation of α-synuclein inclusions into LC3-positive autophagosomes. Knockdown experiments demonstrated the requirement of p62 for α-synuclein autophagy. These results demonstrate that α-synuclein inclusions are preferred targets for p62-dependent autophagy. Next, we investigated the autophagic clearance of impaired mitochondria in α-synuclein inclusion-containing cells. Impaired mitochondria were almost completely eliminated after mitochondrial uncoupling even in the presence of α-synuclein inclusions, suggesting that mitochondrial clearance is not prevented by α-synuclein inclusions in HEK293 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。