Cervical spinal hemisection alters phrenic motor neuron glutamatergic mRNA receptor expression

颈椎半切术改变膈运动神经元谷氨酸能 mRNA 受体表达

阅读:9
作者:Sabhya Rana, Wen-Zhi Zhan, Gary C Sieck, Carlos B Mantilla

Abstract

Upper cervical spinal cord injuries (SCI) disrupt descending inputs to phrenic motor neurons (PhMNs), impairing respiratory function. Unilateral spinal hemisection at C2 (C2SH) results in loss of ipsilateral rhythmic diaphragm muscle (DIAm) EMG activity associated with lower force behaviors accomplished by recruitment of smaller PhMNs in rats. Activity during higher force, non-ventilatory behaviors that recruit larger PhMNs is minimally impaired following C2SH. We previously showed neuroplasticity in glutamatergic receptor expression in PhMN post-C2SH with changes in NMDA receptor expression reflecting functional recovery over time. We hypothesize that C2SH-induced changes in glutamatergic receptor (AMPA and NMDA) mRNA expression in PhMNs vary with motor neuron size, with more pronounced changes in smaller PhMNs. Retrogradely-labelled PhMNs were classified in tertiles according to somal surface area and mRNA expression was measured using single-cell, multiplex fluorescence in situ hybridization. Ipsilateral to C2SH, a pronounced reduction in NMDA mRNA expression in PhMNs was evident at 3 days post-injury with similar impact on PhMNs in the lower size tertile (~68% reduction) and upper tertile (~60%); by 21 days, there was near complete restoration of NMDA receptor mRNA expression across all PhMNs. There were no changes in NMDA mRNA expression contralateral to C2SH. There were no changes in AMPA mRNA expression at PhMNs on either side of the spinal cord or at any time-point post-C2SH. In summary, following C2SH there is ipsilateral reduction in PhMN NMDA mRNA expression at 3 days that is not limited to smaller PhMN recruited in the generation of lower force ventilatory behaviors. The recovery of NMDA mRNA expression by 21 days post-C2SH is consistent with evidence of spontaneous recovery of ipsilateral DIAm activity at this timepoint. These findings suggest a possible role for NMDA receptor mediated glutamatergic signaling in mechanisms supporting postsynaptic neuroplasticity at the PhMN pool and recovery of DIAm activity after cervical SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。