Sex-specific response of rat costochondral cartilage growth plate chondrocytes to 17β-estradiol involves differential regulation of plasma membrane associated estrogen receptors

大鼠肋软骨生长板软骨细胞对 17β-雌二醇的性别特异性反应涉及质膜相关雌激素受体的差异调节

阅读:12
作者:Khairat B Y Elbaradie, Yun Wang, Barbara D Boyan, Zvi Schwartz

Abstract

Both male and female rat growth plate chondrocytes express estrogen receptors (ERs); however 17β-estradiol (E2) induces membrane responses leading to activation of phospholipase A2 (PLA2), phospholipase C (PLC), prostaglandin E2 (PGE2) production, protein kinase C (PKC), and ultimately mitogen protein kinase (MAPK) only in female cells. This study investigated if these sex-specific responses are due to differences in the actual ERs or in downstream signaling. Western blots and flow cytometry of costochondral cartilage resting zone chondrocytes (RCs) showed 2-3 times more ERα in plasma membranes (PMs) from female cells than male cells. Tunicamycin blocked E2-dependent ER-translocation to the PM, indicating palmitoylation was required. Co-immunoprecipitation showed E2 induced complex formation between ER isoforms only in female RCs. To examine if the lack of response in PKC and PGE2 in males is due to differences in signaling, we examined involvement of ERs and the role of PLC and PLA2. Selective ERα (propylpyrazole triol, PPT) and ERβ (diarylproprionitrile, DPN) agonists activated PKC in female RCs only. The PLC inhibitor, U73122 blocked E2's effect on PKC and the cytosolic PLA2 inhibitor, AACOCF3 inhibited the effect on PGE2 in female RCs, confirming involvement of PLC and PLA2 in the mechanism. The PLC activator, m-3M3FβS activated PKC and PLAA peptide increased PGE2 levels in male and female RCs, showing that the signaling pathways are present. These data indicate that differences in membrane ER amount, localization, translocation and interaction are responsible for the sexual dimorphic response to E2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。