Characterizing the Mechanical Properties of Ectopic Axonal Receptive Fields in Inflamed Nerves and Following Axonal Transport Disruption

表征发炎神经中异位轴突受体场的机械特性以及轴突运输中断

阅读:7
作者:George Goodwin, Geoffrey M Bove, Bryony Dayment, Andrew Dilley

Abstract

Radiating pain is a significant feature of chronic musculoskeletal pain conditions such as radiculopathies, repetitive motion disorders and whiplash associated disorders. It is reported to be caused by the development of mechanically-sensitive ectopic receptive fields along intact nociceptor axons at sites of peripheral neuroinflammation (neuritis). Since inflammation disrupts axonal transport, we have hypothesised that anterogradely-transported mechanically sensitive ion channels accumulate at the site of disruption, which leads to axonal mechanical sensitivity (AMS). In this study, we have characterised the mechanical properties of the ectopic axonal receptive fields in the rat and have examined the contribution of mechanically sensitive ion channels to the development of AMS following neuritis and vinblastine-induced axonal transport disruption. In both models, there was a positive force-discharge relationship and mechanical thresholds were low (∼9 mN/mm2). All responses were attenuated by Ruthenium Red and FM1-43, which block mechanically sensitive ion channels. In both models, the transport of TRPV1 and TRPA1 was disrupted, and intraneural injection of agonists of these channels caused responses in neurons with AMS following neuritis but not vinblastine treatment. In summary, these data support a role for mechanically sensitive ion channels in the development of AMS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。